Goto

Collaborating Authors

 Middle East


Perceptual Fairness in Image Restoration

Neural Information Processing Systems

Fairness in image restoration tasks is the desire to treat different sub-groups of images equally well. Existing definitions of fairness in image restoration are highly restrictive. They consider a reconstruction to be a correct outcome for a group (e.g., women) only if it falls within the group's set of ground truth images (e.g., natural images of women); otherwise, it is considered entirely incorrect. Consequently, such definitions are prone to controversy, as errors in image restoration can manifest in various ways. In this work we offer an alternative approach towards fairness in image restoration, by considering the Group Perceptual Index (GPI), which we define as the statistical distance between the distribution of the group's ground truth images and the distribution of their reconstructions. We assess the fairness of an algorithm by comparing the GPI of different groups, and say that it achieves perfect Perceptual Fairness (PF) if the GPIs of all groups are identical. We motivate and theoretically study our new notion of fairness, draw its connection to previous ones, and demonstrate its utility on state-of-the-art face image restoration algorithms.


Django: Detecting Trojans in Object Detection Models via Gaussian Focus Calibration

Neural Information Processing Systems

Object detection models are vulnerable to backdoor or trojan attacks, where an attacker can inject malicious triggers into the model, leading to altered behavior during inference. As a defense mechanism, trigger inversion leverages optimization to reverse-engineer triggers and identify compromised models. While existing trigger inversion methods assume that each instance from the support set is equally affected by the injected trigger, we observe that the poison effect can vary significantly across bounding boxes in object detection models due to its dense prediction nature, leading to an undesired optimization objective misalignment issue for existing trigger reverse-engineering methods. To address this challenge, we propose the first object detection backdoor detection framework Django (Detecting Trojans in Object Detection Models via Gaussian Focus Calibration). It leverages a dynamic Gaussian weighting scheme that prioritizes more vulnerable victim boxes and assigns appropriate coefficients to calibrate the optimization objective during trigger inversion. In addition, we combine Django with a novel label proposal pre-processing technique to enhance its efficiency. We evaluate Django on 3 object detection image datasets, 3 model architectures, and 2 types of attacks, with a total of 168 models. Our experimental results show that Django outperforms 6 state-of-the-art baselines, with up to 38% accuracy improvement and 10x reduced overhead.


MM-WLAuslan: Multi-View Multi-Modal Word-Level Australian Sign Language Recognition Dataset

Neural Information Processing Systems

Isolated Sign Language Recognition (ISLR) focuses on identifying individual sign language signs. Considering the diversity of sign languages across geographical regions, developing region-specific ISLR datasets is crucial for supporting communication and research. Auslan, as a sign language specific to Australia, still lacks a dedicated large-scale word-level dataset for the ISLR task. To fill this gap, we curate the first large-scale Multi-view Multi-modal Word-Level Australian Sign Language recognition dataset, dubbed MM-WLAuslan. Compared to other publicly available datasets, MM-WLAuslan exhibits three significant advantages: (1) the largest amount of data, (2) the most extensive vocabulary, and (3) the most diverse of multi-modal camera views. Specifically, we record 282K+ sign videos covering 3,215 commonly used Auslan glosses presented by 73 signers in a studio environment. Moreover, our filming system includes two different types of cameras, i.e., three Kinect-V2 cameras and a RealSense camera. We position cameras hemispherically around the front half of the model and simultaneously record videos using all four cameras.


Appendix: On Infinite-Width Hypernetworks

Neural Information Processing Systems

The variance was computed empirically over k = 100 normally distributed samples w. As can be seen, the variance of the kernel tends to zero only when both widths increase. In addition, convergence of the width-limit kernel is guaranteed only when the widths of both networks increase, highlighting the importance of wide architectures for both the hyper and implicit networks for stable training. The hyperkernel used corresponds to the infinite width limit of the same architecture. For the input of g, we used random Fourier features [8] of the pixel coordinates as inputs for both the hyperkernel and the hypernetwork.


On Infinite-Width Hypernetworks

Neural Information Processing Systems

Hypernetworks are architectures that produce the weights of a task-specific primary network. A notable application of hypernetworks in the recent literature involves learning to output functional representations. In these scenarios, the hypernetwork learns a representation corresponding to the weights of a shallow MLP, which typically encodes shape or image information. While such representations have seen considerable success in practice, they remain lacking in the theoretical guarantees in the wide regime of the standard architectures. In this work, we study wide over-parameterized hypernetworks. We show that unlike typical architectures, infinitely wide hypernetworks do not guarantee convergence to a global minima under gradient descent. We further show that convexity can be achieved by increasing the dimensionality of the hypernetwork's output, to represent wide MLPs. In the dually infinite-width regime, we identify the functional priors of these architectures by deriving their corresponding GP and NTK kernels, the latter of which we refer to as the hyperkernel. As part of this study, we make a mathematical contribution by deriving tight bounds on high order Taylor expansion terms of standard fully connected ReLU networks.



On the Worst Prompt Performance of Large Language Models

Neural Information Processing Systems

The performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts, which raises significant concerns about their reliability in real-world scenarios. Existing studies often divide prompts into task-level instructions and case-level inputs and primarily focus on evaluating and improving robustness against variations in tasks-level instructions. However, this setup fails to fully address the diversity of real-world user queries and assumes the existence of task-specific datasets.


Improving Robustness of 3D Point Cloud Recognition from a Fourier Perspective

Neural Information Processing Systems

Although 3D point cloud recognition has achieved substantial progress on standard benchmarks, the typical models are vulnerable to point cloud corruptions, leading to security threats in real-world applications. To improve the corruption robustness, various data augmentation methods have been studied, but they are mainly limited to the spatial domain. As the point cloud has low information density and significant spatial redundancy, it is challenging to analyze the effects of corruptions. In this paper, we focus on the frequency domain to observe the underlying structure of point clouds and their corruptions. Through graph Fourier transform (GFT), we observe a correlation between the corruption robustness of point cloud recognition models and their sensitivity to different frequency bands, which is measured by the GFT spectrum of the model's Jacobian matrix. To reduce the sensitivity and improve the corruption robustness, we propose Frequency Adversarial Training (FAT) that adopts frequency-domain adversarial examples as data augmentation to train robust point cloud recognition models against corruptions. Theoretically, we provide a guarantee of FAT on its out-of-distribution generalization performance. Empirically, we conducted extensive experiments with various network architectures to validate the effectiveness of FAT, which achieves the new state-of-the-art results.


Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics

Neural Information Processing Systems

Explainable AI (XAI) is a rapidly growing domain with a myriad of proposed methods as well as metrics aiming to evaluate their efficacy. However, current studies are often of limited scope, examining only a handful of XAI methods and ignoring underlying design parameters for performance, such as the model architecture or the nature of input data. Moreover, they often rely on one or a few metrics and neglect thorough validation, increasing the risk of selection bias and ignoring discrepancies among metrics. These shortcomings leave practitioners confused about which method to choose for their problem. In response, we introduce LATEC, a large-scale benchmark that critically evaluates 17 prominent XAI methods using 20 distinct metrics.


Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation

Neural Information Processing Systems

Despite recent progress made by large language models in code generation, they still struggle with programs that meet complex requirements. Recent work utilizes plan-and-solve decomposition to decrease the complexity and leverage selftests to refine the generated program. Yet, planning deep-inside requirements in advance can be challenging, and the tests need to be accurate to accomplish self-improvement.